Dr. Arthur Zimek
University of Southern Denmark
Campusvej 55
5230 Odense M
Denmark
Room: | |
Phone: | |
Fax: | |
Email: | zimekimada.sdu.dk | @
Publications:
2017 | |
93 | G. Casanova, E. Englmeier, M. Houle, P. Kroeger, M. Nett, E. Schubert, A. Zimek Dimensional Testing for Reverse k-Nearest Neighbor Search Proceedings of the VLDB Endowment, 10(7): 769–780, 2017. |
92 | H.-P. Kriegel, E. Schubert, A. Zimek The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowledge and Information Systems (KAIS), 52(2): 341–378, 2017. |
91 | E. Kirner, E. Schubert, A. Zimek Good and Bad Neighborhood Approximations for Outlier Detection Ensembles In Proceedings of the 10th International Conference on Similarity Search and Applications (SISAP), Munich, Germany, 2017. |
90 | D. Basaran, E. Ntoutsi, A. Zimek Redundancies in Data and their Effect on the Evaluation of Recommendation Systems: A Case Study on the Amazon Reviews Datasets In Proceedings of the 17th SIAM International Conference on Data Mining (SDM), Houston, TX, 2017. |
2016 | |
89 | P. A. Jaskowiak, D. Moulavi, A. C. S. Furtado, R. J. G. B. Campello, A. Zimek, J. Sander On strategies for building effective ensembles of relative clustering validity criteria Knowledge and Information Systems (KAIS), 47(2): 329–354, 2016. |
88 | G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent, M. E. Houle On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study Data Mining and Knowledge Discovery, 30: 891–927, 2016. |
87 | I. Assent, C. Domeniconi, F. Gullo, A. Tagarelli, A. Zimek MultiClust 2013: Multiple Clusterings, Multi-view Data, and Multi-source Knowledge-driven Clustering Workshop Report ACM SIGKDD Explorations, 18(1): 35–38, 2016. |
86 | L. Swersky, H. O. Marques, J. Sander, R. J. G. B. Campello, A. Zimek On the Evaluation of Outlier Detection and One-Class Classification Methods In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada: 1–10, 2016. |
85 | G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent, M. E. Houle On the Evaluation of Outlier Detection: Measures, Datasets, and an Empirical Study Continued In Proceedings of the LWDA 2016 Workshops: KDML, FGWM, FGIR, and FGDB, Potsdam, Germany: 234, 2016. |
2015 | |
84 | E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, A. Zimek A Framework for Clustering Uncertain Data Proceedings of the VLDB Endowment, 8(12): 1976–1979, 2015. |
83 | R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1): 5:1–51, 2015. |
82 | A. Zimek, J. Vreeken The Blind Men and the Elephant: On Meeting the Problem of Multiple Truths in Data from Clustering and Pattern Mining Perspectives Machine Learning, 98(1–2): 121–155, 2015. |
81 | E. Schubert, M. Weiler, A. Zimek Outlier Detection and Trend Detection: Two Sides of the Same Coin In 1st International Workshop on Event Analytics using Social Media Data at the 15th IEEE International Conference on Data Mining (ICDM), Atlantic City, NJ, 2015. |
80 | E. Schubert, A. Zimek, H.-P. Kriegel Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles In Proceedings of the 20th International Conference on Database Systems for Advanced Applications (DASFAA), Hanoi, Vietnam: 19–36, 2015. |
79 | H. O. Marques, R. J. G. B. Campello, A. Zimek, J. Sander On the Internal Evaluation of Unsupervised Outlier Detection In Proceedings of the 27th International Conference on Scientific and Statistical Database Management (SSDBM), San Diego, CA: 7:1–12, 2015. |
78 | J. von Brünken, M. E. Houle, A. Zimek Intrinsic Dimensional Outlier Detection in High-Dimensional Data Technical Report, No. NII-2015-003E, National Institute of Informatics, 2015. |
2014 | |
77 | E. Schubert, A. Zimek, H.-P. Kriegel Local Outlier Detection Reconsidered: a Generalized View on Locality with Applications to Spatial, Video, and Network Outlier Detection Data Mining and Knowledge Discovery, 28(1): 190–237, 2014. |
76 | A. Zimek, I. Assent, J. Vreeken Frequent Pattern Mining Algorithms for Data Clustering In C. C. Aggarwal, J. Han (ed.): Frequent Pattern Mining, Springer: 403–423, 2014. |
75 | D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, J. Sander Density-based Clustering Validation In Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, PA: 839–847, 2014. |
74 | E. Schubert, A. Zimek, H.-P. Kriegel Generalized Outlier Detection with Flexible Kernel Density Estimates In Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, PA: 542–550, 2014. |
73 | M. Pourrajabi, D. Moulavi, R. J. G. B. Campello, A. Zimek, J. Sander, R. Goebel Model Selection for Semi-Supervised Clustering In Proceedings of the 17th International Conference on Extending Database Technology (EDBT), Athens, Greece: 331–342, 2014. |
72 | A. Züfle, T. Emrich, K. A. Schmid, N. Mamoulis, A. Zimek, M. Renz Representative Clustering of Uncertain Data In Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), New York, NY: 243–252, 2014. |
71 | A. Zimek, R. J. G. B. Campello, J. Sander Data Perturbation for Outlier Detection Ensembles In Proceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM), Aalborg, Denmark: 13:1–12, 2014. |
70 | J. Li, J. Sander, R. J. G. B. Campello, A. Zimek Active Learning Strategies for Semi-Supervised DBSCAN In Proceedings of the 27th Canadian Conference on Artificial Intelligence (Canadian AI), Montréal, QC, Canada: 179–190, 2014. |
69 | X. H. Dang, I. Assent, R. T. Ng, A. Zimek, E. Schubert Discriminative Features for Identifying and Interpreting Outliers In Proceedings of the 30th International Conference on Data Engineering (ICDE), Chicago, IL: 88–99, 2014. |
2013 | |
68 | R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies Data Mining and Knowledge Discovery, 27(3): 344–371, 2013. |
67 | K. Sim, V. Gopalkrishnan, A. Zimek, G. Cong A survey on enhanced subspace clustering Data Mining and Knowledge Discovery, 26(2): 332–397, 2013. |
66 | A. Zimek, R. J. G. B. Campello, J. Sander Ensembles for Unsupervised Outlier Detection: Challenges and Research Questions ACM SIGKDD Explorations, 15(1): 11–22, 2013. |
65 | A. Zimek Clustering High-Dimensional Data In C. C. Aggarwal, C. K. Reddy (ed.): Data Clustering: Algorithms and Applications, CRC Press: 201–230, 2013. |
64 | E. Schubert, A. Zimek, H.-P. Kriegel Geodetic Distance Queries on R-Trees for Indexing Geographic Data In Proceedings of the 13th International Symposium on Spatial and Temporal Databases (SSTD), Munich, Germany: 146–164, 2013. |
63 | A. Zimek, M. Gaudet, R. J. G. B. Campello, J. Sander Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles In Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Chicago, IL: 428–436, 2013. |
62 | E. Achtert, H.-P. Kriegel, E. Schubert, A. Zimek Interactive Data Mining with 3D-Parallel-Coordinate-Trees In Proceedings of the ACM International Conference on Management of Data (SIGMOD), New York City, NY: 1009–1012, 2013. |
61 | A. Zimek, E. Schubert, H.-P. Kriegel Outlier Detection in High-Dimensional Data Tutorial at the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Gold Coast, Australia, 2013. |
2012 | |
60 | A. Zimek, E. Schubert, H.-P. Kriegel A Survey on Unsupervised Outlier Detection in High-Dimensional Numerical Data Statistical Analysis and Data Mining, 5(5): 363–387, 2012. |
59 | H.-P. Kriegel, P. Kröger, A. Zimek Subspace Clustering Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(4): 351–364, 2012. |
58 | H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Outlier Detection in Arbitrarily Oriented Subspaces In Proceedings of the 12th IEEE International Conference on Data Mining (ICDM), Brussels, Belgium: 379–388, 2012. |
57 | E. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, H.-P. Kriegel Density-based Projected Clustering over High Dimensional Data Streams In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA: 987–998, 2012. |
56 | E. Schubert, R. Wojdanowski, A. Zimek, H.-P. Kriegel On Evaluation of Outlier Rankings and Outlier Scores In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA: 1047–1058, 2012. |
55 | E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, A. Zimek Evaluation of Clusterings – Metrics and Visual Support In Proceedings of the 28th International Conference on Data Engineering (ICDE), Washington, DC: 1285–1288, 2012. |
54 | A. Zimek, E. Schubert, H.-P. Kriegel Outlier Detection in High-Dimensional Data Tutorial at the 12th International Conference on Data Mining (ICDM), Brussels, Belgium, 2012. |
2011 | |
53 | H.-P. Kriegel, P. Kröger, J. Sander, A. Zimek Density-based clustering Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3): 231–240, 2011. |
52 | H.-P. Kriegel, E. Schubert, A. Zimek Evaluation of Multiple Clustering Solutions In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece: 55–66, 2011. |
51 | J. Vreeken, A. Zimek When Pattern Met Subspace Cluster – A Relationship Story In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece: 7–18, 2011. |
50 | H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Interpreting and Unifying Outlier Scores In Proceedings of the 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ: 13–24, 2011. |
49 | T. Bernecker, M. E. Houle, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, A. Zimek Quality of Similarity Rankings in Time Series In Proceedings of the 12th International Symposium on Spatial and Temporal Databases (SSTD), Minneapolis, MN: 422–440, 2011. |
48 | E. Achtert, A. Hettab, H.-P. Kriegel, E. Schubert, A. Zimek Spatial Outlier Detection: Data, Algorithms, Visualizations In Proceedings of the 12th International Symposium on Spatial and Temporal Databases (SSTD), Minneapolis, MN: 512–516, 2011. |
47 | H.-P. Kriegel, P. Kröger, E. Ntoutsi, A. Zimek Density Based Subspace Clustering over Dynamic Data In Proceedings of the 23rd International Conference on Scientific and Statistical Database Management (SSDBM), Portland, OR: 387–404, 2011. |
46 | T. Bernecker, F. Graf, H.-P. Kriegel, C. Moennig, A. Zimek BeyOND – Unleashing BOND In Proceedings of the 37th International Conference on Very Large Data Bases (VLDB) Workshop on Ranking in Databases (DBRank), Seattle, WA: 34–39, 2011. |
45 | H.-P. Kriegel, E. Ntoutsi, M. Spiliopoulou, G. Tsoumakas, A. Zimek Mining Complex Dynamic Data Tutorial at the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Athens, Greece, 2011. |
2010 | |
44 | A. Zimek, F. Buchwald, E. Frank, S. Kramer A Study of Hierarchical and Flat Classification of Proteins IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(3): 563–571, 2010. |
43 | J. Aßfalg, J. Gong, H.-P. Kriegel, A. Pryakhin, T. Wei, A. Zimek Investigating a Correlation between Subcellular Localization and Fold of Proteins Journal of Universal Computer Science, 16(5): 604–621, 2010. |
42 | E. Achtert, H.-P. Kriegel, L. Reichert, E. Schubert, R. Wojdanowski, A. Zimek Visual Evaluation of Outlier Detection Models In Proceedings of the 15th International Conference on Database Systems for Advanced Applications (DASFAA), Tsukuba, Japan: 396–399, 2010. |
41 | K. Kawagoe, T. Bernecker, H.-P. Kriegel, M. Renz, A. Zimek, and A. Züfle Similarity Search in Time Series of Dynamical Model-based Systems In Proceedings of the 21st International Conference on Database and Expert Systems Applications (DEXA), 2nd Workshop on Database Technology for Life Sciences and Medicine (DBLM), Bilbao, Spain: 110–114, 2010. |
40 | M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany: 482–500, 2010. |
39 | T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, A. Zimek Subspace Similarity Search: Efficient k-NN Queries in Arbitrary Subspaces In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany: 555–564, 2010. |
38 | T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, A. Zimek Subspace Similarity Search Using the Ideas of Ranking and Top-k Retrieval In Proceedings of the 26th International Conference on Data Engineering (ICDE) Workshop on Ranking in Databases (DBRank), Long Beach, CA: 4–9, 2010. |
37 | I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl, A. Zimek On Using Class-Labels in Evaluation of Clusterings In MultiClust: 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with KDD 2010, Washington, DC, 2010. |
36 | H.-P. Kriegel, A. Zimek Subspace Clustering, Ensemble Clustering, Alternative Clustering, Multiview Clustering: What Can We Learn From Each Other? In MultiClust: 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with KDD 2010, Washington, DC, 2010. |
35 | H.-P. Kriegel, P. Kröger, E. Ntoutsi, A. Zimek Towards subspace clustering on dynamic data: an incremental version of PreDeCon In StreamKDD'10 - 1st International Workshop on Novel Data Stream Pattern Mining Techniques Held in Conjunction with KDD 2010, Washington, DC: 31–38, 2010. |
34 | H.-P. Kriegel, P. Kröger, A. Zimek Outlier Detection Techniques Tutorial at the 10th SIAM International Conference on Data Mining (SDM), Columbus, OH, 2010. |
33 | H.-P. Kriegel, P. Kröger, A. Zimek Outlier Detection Techniques Tutorial at the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington, DC, 2010. |
2009 | |
32 | H.-P. Kriegel, P. Kröger, A. Zimek Clustering High Dimensional Data: A Survey on Subspace Clustering, Pattern-based Clustering, and Correlation Clustering ACM Transactions on Knowledge Discovery from Data (TKDD), 3(1): 1–58, 2009. |
31 | A. Zimek Correlation Clustering ACM SIGKDD Explorations, 11(1): 53–54, 2009. |
30 | G. Moise, A. Zimek, P. Kröger, H.-P. Kriegel, J. Sander Subspace and Projected Clustering: Experimental Evaluation and Analysis Knowledge and Information Systems (KAIS), 21(3): 299–326, 2009. |
29 | J. Aßfalg, J. Gong, H.-P. Kriegel, A. Pryakhin, T. Wei, A. Zimek Supervised Ensembles of Prediction Methods for Subcellular Localization Journal of Bioinformatics and Computational Biology, 7(2): 269–285, 2009. |
28 | P. Kröger, A. Zimek Subspace Clustering Techniques In L. Liu, M. T. Özsu (ed.): Encyclopedia of Database Systems, Springer: 2873–2875, 2009. |
27 | E. Achtert, T. Bernecker, H.-P. Kriegel, E. Schubert, A. Zimek ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series In Proceedings of the 11th International Symposium on Spatial and Temporal Databases (SSTD), Aalborg, Denmark: 436–440, 2009. |
26 | H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data In Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand: 831–838, 2009. |
25 | H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek LoOP: Local Outlier Probabilities In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM), Hong Kong, China: 1649–1652, 2009. |
24 | H.-P. Kriegel, P. Kröger, A. Zimek Outlier Detection Techniques Tutorial at the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand, 2009. |
2008 | |
23 | H.-P. Kriegel, P. Kröger, A. Zimek Detecting clusters in moderate-to-high dimensional data: subspace clustering, pattern-based clustering, and correlation clustering Proceedings of the VLDB Endowment, 1(2): 1528–1529, 2008. |
22 | E. Achtert, C. Böhm, J. David, P. Kröger, A. Zimek Global Correlation Clustering Based on the Hough Transform Statistical Analysis and Data Mining, 1(3): 111–127, 2008. |
21 | H.-P. Kriegel, M. Schubert, A. Zimek Angle-Based Outlier Detection in High-dimensional Data In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, NV: 444–452, 2008. |
20 | H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek A General Framework for Increasing the Robustness of PCA-based Correlation Clustering Algorithms In Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM), Hong Kong, China: 418–435, 2008. |
19 | E. Achtert, H.-P. Kriegel, A. Zimek ELKI: A Software System for Evaluation of Subspace Clustering Algorithms In Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM), Hong Kong, China: 580–585, 2008. |
18 | J. Aßfalg, J. Gong, H.-P. Kriegel, A. Pryakhin, T. Wei, A. Zimek Supervised Ensembles of Prediction Methods for Subcellular Localization In Proceedings of the 6th Annual Asia Pacific Bioinformatics Conference (APBC), Kyoto, Japan: 29–38, 2008. |
17 | E. Achtert, C. Böhm, J. David, P. Kröger, A. Zimek Robust Clustering in Arbitrarily Oriented Subspaces In Proceedings of the 8th SIAM International Conference on Data Mining (SDM), Atlanta, GA: 763–774, 2008. |
16 | H.-P. Kriegel, P. Kröger, A. Zimek Detecting Clusters in Moderate-to-High Dimensional Data: Subspace Clustering, Pattern-based Clustering, and Correlation Clustering Tutorial at the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, NV, 2008. |
15 | H.-P. Kriegel, P. Kröger, A. Zimek Detecting Clusters in Moderate-to-High Dimensional Data: Subspace Clustering, Pattern-based Clustering, and Correlation Clustering Tutorial at the 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Osaka, Japan, 2008. |
14 | H.-P. Kriegel, P. Kröger, A. Zimek Detecting Clusters in Moderate-to-High Dimensional Data: Subspace Clustering, Pattern-based Clustering, and Correlation Clustering Tutorial at the 34nd International Conference on Very Large Data Bases (VLDB), Auckland, New Zealand, 2008. |
13 | A. Zimek Correlation Clustering PhD Thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2008. |
2007 | |
12 | H.-P. Kriegel, K. M. Borgwardt, P. Kröger, A. Pryakhin, M. Schubert, A. Zimek Future Trends in Data Mining Data Mining and Knowledge Discovery, 15(1): 87–97, 2007. |
11 | S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, M. Schubert, A. Zimek Density-Based Data Analysis and Similarity Search In V. A. Petrushin, L. Khan (ed.): Multimedia Data Mining and Knowledge Discovery, Springer: 94–115, 2007. |
10 | E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, A. Zimek Detection and Visualization of Subspace Cluster Hierarchies In Proceedings of the 12th International Conference on Database Systems for Advanced Applications (DASFAA), Bangkok, Thailand: 152–163, 2007. |
9 | E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, A. Zimek On Exploring Complex Relationships of Correlation Clusters In Proceedings of the 19th International Conference on Scientific and Statistical Database Management (SSDBM), Banff, Canada: 7–16, 2007. |
8 | E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, A. Zimek Robust, Complete, and Efficient Correlation Clustering In Proceedings of the 7th SIAM International Conference on Data Mining (SDM), Minneapolis, MN: 413–418, 2007. |
7 | H.-P. Kriegel, P. Kröger, A. Zimek Detecting Clusters in Moderate-to-High Dimensional Data: Subspace Clustering, Pattern-based Clustering, and Correlation Clustering Tutorial at the 7th International Conference on Data Mining (ICDM), Omaha, NE, 2007. |
2006 | |
6 | E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, A. Zimek Finding Hierarchies of Subspace Clusters In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Berlin, Germany: 446–453, 2006. |
5 | E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, A. Zimek Deriving Quantitative Models for Correlation Clusters In Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA: 4–13, 2006. |
4 | E. Achtert, C. Böhm, P. Kröger, A. Zimek Mining Hierarchies of Correlation Clusters In Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM), Vienna, Austria: 119–128, 2006. |
3 | H.-P. Kriegel, A. Pryakhin, M. Schubert, A. Zimek COSMIC: Conceptually Specified Multi-Instance Clusters In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), Hong Kong, China: 917–921, 2006. |
2005 | |
2 | A. Zimek Hierarchical Classification Using Ensembles of Nested Dichotomies Diploma Thesis, Technical University of Munich and Ludwig-Maximilians-Universität München, Munich, Germany, 2005. |
2004 | |
1 | C. Böhm, K. Kailing, P. Kröger, A. Zimek Computing Clusters of Correlation Connected Objects In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Paris, France: 455–466, 2004. |